Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jonathan P. H. Charmant,* A. Guy Orpen, Sian C. James, Nicholas C. Norman and Jonathan Starbuck

School of Chemistry, University of Bristol, Bristol BS8 1TS, England

Correspondence e-mail:
jon.charmant@bris.ac.uk

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.022$
$w R$ factor $=0.052$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography

Printed in Great Britain - all rights reserved

Tetramethylammonium dichlorodiphenylbismuthate(III)

The crystal structure of the title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{BiCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$, contains a $\left[\mathrm{BiCl}_{2} \mathrm{Ph}_{2}\right]^{-}$anion with an equatorially vacant trigonal-bipyramidal geometry.

Comment

A variety of anions of formula $\left[E \mathrm{Cl}_{2} \mathrm{Ph}_{2}\right]^{-}$are known for arsenic (Grewe et al., 1998) and antimony (Sheldrick \& Martin, 1992; Hall \& Sowerby, 1988; Calderazzo et al., 1991; Stark et al., 1999). For bismuth, the $\left[\mathrm{BiBr}_{2} \mathrm{Ph}_{2}\right]^{-}$(Stark et al., 1999; Clegg et al., 1992) and $\left[\mathrm{BiI}_{2} \mathrm{Ph}_{2}\right]^{-}$(Clegg et al., 1993) ions have been structurally characterized. This paper reports the structure of the $\left[\mathrm{BiCl}_{2} \mathrm{Ph}_{2}\right]^{-}$anion as the tetramethylammonium salt, (I).

(I)

The structure of the anion in (I) is similar to that found for other diaryldihalobismuthate(III) anions. The geometry is based on a trigonal bipyramid in which the formal lone pair and phenyl groups occupy equatorial positions and the halides reside in axial sites. For bismuth, the $\mathrm{C}-\mathrm{Bi}-\mathrm{C}$ angle between the equatorial phenyl groups approaches 90°, which is typical of inter-bond angles in $\mathrm{Bi}^{\mathrm{III}}$ structures (Clegg et al., 1992, 1993).

Experimental

Crystals of the title compound were obtained from a reaction between $\mathrm{BiCl}_{2} \mathrm{Ph}$ and $\left[\mathrm{NMe}_{4}\right] \mathrm{Cl}$ in tetrahydrofuran overlaid with hexane.

[^0]
Data collection

Bruker CCD area-detector diffractometer
$0.3^{\circ} \omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.305, T_{\max }=0.605$
9238 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.052$
$S=1.02$
3185 reflections
186 parameters
H -atom parameters constrained

3185 independent reflections
2787 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 14$
$k=-13 \rightarrow 13$
$l=-16 \rightarrow 16$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0278 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.28$ e \AA^{-3}
Extinction correction: SHELXL97
Extinction coefficient: 0.00272 (13)

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Bi} 1-\mathrm{C} 7$	$2.236(5)$	$\mathrm{Bi} 1-\mathrm{Cl} 2$	$2.7310(11)$
$\mathrm{Bi} 1-\mathrm{C} 1$	$2.252(4)$	$\mathrm{Bi} 1-\mathrm{Cl} 1$	$2.7348(11)$
$\mathrm{C} 7-\mathrm{Bi} 1-\mathrm{C} 1$	$94.74(16)$	$\mathrm{C} 7-\mathrm{Bi} 1-\mathrm{Cl} 1$	$88.04(10)$
$\mathrm{C} 7-\mathrm{Bi} 1-\mathrm{Cl} 2$	$87.37(10)$	$\mathrm{C} 1-\mathrm{Bi} 1-\mathrm{Cl} 1$	$87.37(10)$
$\mathrm{C} 1-\mathrm{Bi} 1-\mathrm{Cl} 2$	$89.82(11)$	$\mathrm{Cl} 2-\mathrm{Bi} 1-\mathrm{Cl} 1$	$174.40(4)$

Methyl H atoms were positioned using a rotating-group refinement, with isotropic displacement parameters 1.5 times that of their adjacent C atom. The phenyl H atoms were constrained to ideal geometries and assigned isotropic displacement parameters 1.2 times that of their adjacent C atom. The two highest residual electrondensity peaks (1.59 and $1.50 \mathrm{e}^{-3} \AA^{-3}$) are found 0.97 and $0.98 \AA$ from the Bi atom. All other residual electron-density peaks have values less than $1 \mathrm{e} \AA^{-3}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Cambridge Crystallographic Data Centre for project studentship funding (JS).

References

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Calderazzo, F., Marchetti, F., Ungari, F. \& Wieber, M. (1991). Gazz. Chim. Ital. 121, 93-100.

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Clegg, W., Errington, R. J., Fisher, G. A., Flynn, R. J. \& Norman, N. C. (1993). J. Chem. Soc. Dalton Trans. pp. 637-641.

Clegg, W., Errington, R. J., Fisher, G. A., Hockless, D. C. R., Norman, N. C., Orpen, A. G. \& Stratford, S. E. (1992). J. Chem. Soc. Dalton Trans. pp. 1967-1974.
Grewe, S., Häusler, T., Mannel, M., Roßenbeck, B. \& Sheldrick, W. S. (1998). Z. Anorg. Allg. Chem. 624, 613-619.

Hall, M. \& Sowerby, D. B. (1988). J. Organomet. Chem. 347, 59-70.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, W. S. \& Martin, C. (1992). Z. Naturforsch. Teil B, 47, 919-924.
Stark, J. L., Harms, B., Guzmann-Jimenez, I., Whitmire, K. H., Gautier, R., Halet, J.-F. \& Saillard, J.-Y. (1999). J. Am. Chem. Soc. 121, 4409-4418.

[^0]: $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{BiCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$

 Crystal data
 $M_{r}=508.23$
 Monoclinic, $P 2_{1} / n$
 $a=12.162$ (3) A
 $b=11.1693$ (15) \AA
 $c=14.241(3) \AA$
 $\beta=110.642(14)^{\circ}$
 $V=1810.3(7) \AA^{3}$
 $Z=4$
 $D_{x}=1.865 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 181
 reflections
 $\theta=2-20^{\circ}$
 $\mu=10.03 \mathrm{~mm}^{-1}$
 $T=173$ (2) K
 Block, colourless
 $0.30 \times 0.10 \times 0.05 \mathrm{~mm}$

